
Journal of Statistical Physics, Vol. 51, Nos. 5/6, 1988 

Reduced Descriptions of Hydrodynamic Turbulence 

Robert H. Kraichnan m 

Received March 21, 1988 

Navier-Stokes turbulence at ordinarily large Reynolds numbers can involve 
excitation of perhaps 10 is Fourier modes. A variety of proposals for reduced 
description have been offered, both to gain physical insight and to make 
computation feasible. The present brief and idiosyncratic survey discusses 
Galerkin approximations, Liapunov bases, Karhunen-Loeve decompositions, 
and statistically based decimation techniques. 
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1. I N T R O D U C T I O N  

Atmospheric turbulence can exhibit simultaneously a range of scales from 
kilometers to millimeters, so that there are the order of 1018 excited degrees 
of freedom of the velocity field. Other geophysical and astrophysical 
turbulent flows are similarly large systems. Laboratory  turbulent flows 
commonly can contain the order of 10 9 excited degrees of freedom. There 
are strong motivations to find reduced descriptions or models of such large 
flows: First, complete simulation of the Navier-Stokes (NS) equations for 
such turbulence is not feasible on existing or foreseen computers. Second, it 
is desired to extract the essential physical phenomena in a compact  and 
insightful fashion. 

Two approaches to reduced description of turbulence are: (a) con- 
struction of model systems of much smaller size; (b) description by a small 
set of statistics. There a re  also hybrid approaches in which (c)flow 
statistics are used to construct model systems of reduced size. A very 
simple reduced model of turbulence can be constructed by Galerkin 
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approximation: removal of all wavevector modes (or other appropriate 
modes) above a cutoff wavenumber. Such models can be constructed so as 
to conserve energy and other inviscid constants of motion, but they can 
lose an important dynamical property of turbulence: the dissipative action 
of high wavenumbers on low wavenumbers. In many computer simulation 
models, this problem is addressed by introducing an eddy viscosity, one of 
the oldest concepts in turbulence theory. Eddy viscosity is a statistical 
representation of the effects of the eliminated modes, and models with eddy 
viscosity are perhaps the simplest that combine reduction of the number of 
modes with statistical description. 

More sophisticated models have been constructed by Karhunen- 
Eoeve expansion, in which modal decomposition based simply on boundary 
conditions is replaced by decomposition into eigenfunctions of the 
covariance matrix of the velocity field. The hope here is that more of the 
physics can be included in a truncation that involves relatively few degrees 
of freedom. One can also envisage decomposition into Liapunov eigen- 
functions so that truncations can be constructed in which only the most 
unstable modes of motion are retained. Finally, there are models in which 
there is no truncation in a mode space, but, instead, the mode density is 
reduced at high mode numbers. Such decimated models can be constructed 
simply by eliminating modes and altering the interactions of the surviving 
modes. But less violence is done to the statistical mechanics if, instead, 
interaction coefficients are unaltered, and the eliminated modes are 
represented by statistically determined terms in the equations of motion of 
the surviving modes. 

Systematic attempts to incorporate statistical information into reduced 
models bring one face to face with the profound difficulties posed by 
turbulence as a problem in strongly nonequilibrium statistical mechanics. 
From the standpoint of kinetic theory, a highly turbulent gas exhibits 
one-body distribution functions that are very close to absolute equilibrium 
values. This is no help because the turbulent hydrodynamic fluctuations 
imply significant nonequilibrium many-body correlations of all orders, on 
hydrodynamic scales. The statistical mechanics of the NS equation, which 
is a more valid starting point, is strongly nonequilibrium: there is impor- 
tant transfer of energy between modes whose mean excitation energies 
differ substantially. At the same time there is strongly nonlinear interaction 
and the excitation of very large numbers of modes. 

One consequence of the interplay of strong nonlinearity and strong 
disequilibrium is the simultaneous presence of order and disorder. The 
one-point velocity distribution in many turbulent flows is nearly Gaussian, 
while the one-point distribution of velocity space derivatives is highly non- 
Gaussian. Also, recognizable but plastic spatial and temporal structures are 
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present: strong vortices of various kinds and, at small spatial scales, vortex 
tubes and sheets. It is an open question how well such a dynamics can be 
described by systematic statistical procedures based on low-order moments 
and partial probability distributions. The constrained decimation scheme 
described in Section 5 promises convergent approximation sequences, but 
both the expected rates of convergence and the practicability of the 
approximations are unknown. 

2. M O D E  T R U N C A T I O N  V E R S U S  M O D E  E L I M I N A T I O N  

The incompressible NS equation may be written as 

(O/~t - vV2)u + u" Vu - Vp = 0 (2.1) 

where v is kinematic viscosity, u(x, t) is the velocity field, p is pressure 
divided by density, and incompressibility is expressed by the solenoidal 
condition V. u = 0. The nonlinear advective term u.  Vu in the NS equation, 
together with the pressure it induces, conserves kinetic energy K - S  lu[ 2 dx. 
Other inviscid (v = 0) constants of motion include the circulations 5~ u" d! 
about all closed circuits that move with the fluid. 

Let u(x, t) be expanded in some complete orthonormal set d~i(x) of 
real vector eigenfunctions of a solenoidal self-adjoint operator: 

Then 

u(x, t) = ~ yi(t) dpi(x) (2.2) 
i 

K(t) = 1 ~ [y i ( t ) ]2  (2.3) 
i 

and the NS equation takes the form 

dy~/dt + ~ (v o. + Lo) y~ + ~ A~m yj y,. = 0 
j jm 

(2.4) 

Here vii, which arises from v, L~, which comes from elimination of pressure 
via incompressibility, and Aiim = A i m j ,  which arises from the advection term 
and pressure 'elimination, all are constant coefficients. If the boundary con- 
ditions are cyclic on a box and the eigenfunctions are Fourier modes, va is 
diagonal and Lij vanishes. 

The important property of inviscid conservation of energy by 
individual pair and triad interactions follows immediately from overall 
conservation and the fact that (2.3) is a sum of squares: If only two or 
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three modes are excited at an instant, then the rate of change of K(t) at 
that instant involves contributions only from those modes. This implies the 
detailed conservation identities 

L o + Lji = 0, Aom + Ajmi + Amij  = 0 (2.5) 

Because of (2.5), conservative Galerkin approximations can be constructed 
simply by retaining only some finite subset of the Yi and deleting all terms 
in their equations of motion that contain y factors outside the subset. If 
each eigenfunction identically satisfies the boundary conditions, then the 
Galerkin truncations will also. 

Suppose that the flow lives in a cyclic box and that a Galerkin trun- 
cation is made by discarding all Fourier modes k above some wavenumber 
kc. If the Reynolds number is high enough, the truncation will eliminate 
the modes where, in the unmutilated flow, most of the viscous dissipation 
takes place. This means that the truncation will seriously distort the 
dynamics of the modes retained. Similar problems beset severe mode trun- 
cations in other geometries. There is thus a strong motivation to somehow 
replace simple truncation by an elimination procedure that retains the 
essential dynamical reaction of the eliminated modes on the modes 
retained. 

If the excitation at time t = 0 is confined to modes below kc, then, in 
principle, the modes above kc, which are excited at later times, can be 
eliminated, without any violence to the dynamics, by repeated use of (2.4) 
in the form of an integral equation. Each such formal elimination of a 
single mode raises the degree of nonlinearity in the equations for the 
remaining modes. Thus, the exact elimination of large numbers of modes is 
unthinkable. There is also an essential physical problem: the dynamical 
sensitivity of high-Reynolds number turbulence. It is known from 
experiment, computer simulation, and theory that the detailed point-to- 
point and time-to-time structure of the velocity field is exceedingly sensitive 
to small perturbation. (In contrast, low-order statistics of the field can be 
robustly stable to small perturbation.) This means that the exact low-order 
equations obtained by formal mode elimination must be similarly sensitive. 
It therefore would make little sense to follow exact behavior even if it were 
practicable. 

A variety of more or less workable approximations for the dynamical 
effects of eliminated high-k modes have been constructed by heuristic 
arguments, by use of perturbation theory and renormalized perturbation 
theory (RPT), by renormalization group (RNG), and by constrained 
decimation (CDS). (1 5) The simplest such approximations add a dynamical 
damping to the viscous damping in (2.4) for the retained modes. RPT, 
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RNG, and CDS approximations also yield a random forcing term that 
models the effects of dynamical sensitivity. RPT and CDS approximations 
yield a time-lagged dynamical damping term of the form 

f] tlij(t, s) yj(s) ds (2.6) 
J 

3. L U M L E Y ' S  K A R H U N E N - L O E V E  A N A L Y S I S  

Over a period of years, Lumley and his co-workers have exploited the 
expansion of u(x, t) for statistically stationary turbulence into orthonormal 
eigenfunctions ~bi(x) of the one-time velocity covariance ~6 8): 

f R(x, x') ~i(x') dx'= ,~i~'(x) (3.1) 

where 

ll(x, x')= (u(x, t) u(x', t)) 

and ( . )  denotes ensemble average. The eigenfunctions are numbered in 
order of decreasing eigenvalue 2 i. The 2 i are all positive and the mean of 
the kinetic energy (2.3) is simply 

( K )  = � 8 9  2" (3.2) 
i 

This expansion is dynamically natural in that, for a given ensemble of 
velocity fields, its truncations of given order maximize the mean kinetic 
energy retained, in comparison with any other orthogonal expansion. 
Moreover, the eigenfunctions automatically have the solenoidal property 
of the velocity field. The validity of these truncations in Galerkin 
approximations depends on how compact the exact eigenvalue spectrum is. 
In the case of spatially homogeneous turbulence, the eigenfunctions are 
simply Fourier modes and the eigenvalue spectrum is the wavevector spec- 
trum, but arranged in order of decreasing excitation instead of increasing 
wavevector. 

It is important to point out that, even when a small set of Lumley 
modes contains most of the kinetic energy, the eigenfunctions need not 
resemble typical flow structures in physical space. This is because phase 
information important to differentiating structures is not expressed by 
R(x, x'). ~6) As an illustration, consider a one-dimensional process u(x) that 
consists of a superposition of randomly signed Gaussian pulses, all of the 
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same width d, randomly placed on a cyclic line segment. The Lumley eigen- 
functions are Fourier modes, and truncation to a wavenumber several 
times d ~ captures most of the variance. However, the eigenfunctions do 
not resemble the pulse structures. The covariance R(x, x') equally well 
describes filtered white noise. A more easily addressed shortcoming is that 
the decomposition does not reflect time variation. The obvious formal 
remedy is to decompose u(x, t) into four-dimensional eigenfunctions of the 
two-time covariance of u(x, t).  (6) 

An interesting application has been made by Lumley and his co- 
workers to the wall region of turbulent pipe flow, where the eigenfunctions 
of low order differ significantly from Fourier modes. In this work (7'8) a 
straight truncation to ten modes is enhanced by adding a simple heuristic 
eddy damping; representing the mean velocity field by an expression in 
terms of averages over the turbulent field (Reynolds stresses); and 
including terms expressing pressure effects from the central region of the 
flow, which is excluded from the calculation. The eigenfunctions are 
not determined self-consistently from the calculation, but instead are 
constructed from experimental data and full computer simulations of flows. 

Numerical integrations of the truncated and enhanced amplitude 
equations display reasonable faithfulness to the overall boundary-layer 
dynamics, as determined by experiment and full computer simulation. Most 
interestingly, they also display temporal bursts of excitation resembling, in 
some respects, those observed in full simulations. Several things need more 
clarification: How does the behavior change as more modes are added? 
How diagonal is the calculated covariance matrix? How sensitive are the 
results to the form of the eddy damping and the representation of the 
effects of the central flow region? How different are the results from those 
of a truncation and enhancement in which the eigenfunctions are deter- 
mined in a simple way from boundary conditions rather than from the 
empirical covariance matrix? 

It would be of great interest to do a Lumley-type analysis in which the 
eigenfunctions are determined self-consistently. To do this, one would take 
some truncated starting basis, either empirical or suggested by the boun- 
dary conditions, and do an iteration procedure in which the covariance 
matrix computed from an ensemble of solutions at one stage is used to set 
the truncated representation for the next stage. 

4. L I A P U N O V  BASES 

Several attempts have recently been made to compute the Liapunov 
dimension of turbulent flows at modest and moderate Reynolds numbers 
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by full numerical simulations of flow ensembles. The Liapunov dimension 
is of interest in itself. Possibly also, such analysis may help to assess the 
plausibility of severe truncations of the modal equations and point to apt 
expansion bases. A brief summary of the computer results will here be 
followed by some general remarks on the significance of the Liapunov 
analysis. 

Grappin and L6orat ~9) have computed Liapunov exponents and 
Kaplan-Yorke dimension for a simulation of randomly forced two-dimen- 
sional turbulence with a resolution of 128 • 128 mesh points. The number 
of available degrees of freedom was thus~O(105). Plots of velocity and vor- 
ticity contours showed that essentially the full available resolution was 
utilized by the small-scale structures of the flow. The Kaplan-Yorke dimen- 
sion, in contrast, was found to be about 23. The small dimensionality here 
is consistent with pictures of two-dimensional turbulence in which the high- 
wavenumber structure consists of thin boundary layers attached to and 
controlled by a few large eddies, the size of the system. ~1~ The dynamical 
freedom is mostly in these large eddies. 

A strongly contrasting result was found by Keefe etal.  ~11~ for three- 
dimensional turbulence. Here computer simulations of plane Poiseuille flow 
were made with a resolution of 33 grid points across a channel and eight 
grid points each in the cyclic spanwise and flowwise directions. The 
Reynolds number based on pressure gradient and channel half-width was 
2800 and the Kaplan-Yorke dimension was placed in the range 360-400. 
The total number of degrees of freedom in the calculation was about 3200. 
The dimensionality based on simple turbulence cascade ideas is substan- 
tially less than that, because viscous effects tie the smallest possible spatial 
scales to larger ones. Thus, the Kaplan-Yorke dimension that was found is 
not an order of magnitude less than expected by the crudest dynamical 
modeling. Moreover, this flow is barely turbulent; the Reynolds number is 
between the thresholds for instability to finite and to infinitesimal 
disturbances. 

The Liapunov exponents, from which the Kaplan-Yorke dimension is 
constructed, are one measure of the divergence of initially nearby solutions 
of the dynamical equations. If ul(x, t) and u2(x, t) are a pair of initially 
neighboring solutions, then an error variance A(x, t) may be defined by (12) 

6u(x, t )=  ul(x, t ) -uZ(x,  t), A(x, t )=  <16u(x, t)l 2) (4.1) 

Liapunov exponents characterize the behavior of A(x, t) when r t) is 
infinitesimal. But the behavior of A(x, t) for finite separation of the two 
solutions is also of great interest. For example, the mode amplitudes below 
a crossover mode number may be known in detail at initial time, while 
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only the spectrum is known above crossover. An important predictability 
problem in atmospheric dynamics is the evolution of contributions to 
A(x, t) below crossover from such a finite-error start. 

Even the full behavior of A(x, t) gives a highly inadequate measure of 
error growth. Here are two examples. First consider a scalar field ~b(x, t) 
passively advected by a normally distributed three-dimensional prescribed 
velocity field according to 

(O/c3t + u" V) ~b(x, t) = 0 (4.2) 

Fluid elements diffuse apart in such a vetocity field (even if it is frozen in 
time). Consequently, if the scalar field initially consists of two small blobs 
separated by a small distance, the blobs will eventually move chaotically 
away from each other. Consider now the error variance associated with the 
pair of fields ~bt(x, t), ~b2(x, t) such that each field consists of a small blob, 
with the blobs initially close together but nonoverlapping. It is easily seen 
from (4.2) that the scalar error variance is independent of time. It totally 
fails to capture the chaotic behavior of the system. 

For a second example, return to the NS equation and suppose that the 
initial field consists of a single localized vortex, with the vortex position 
initially identical in ul(x, t) and u2(x, t). Suppose also that there is dis- 
tributed weak excitation that differs between the two fields, with the result 
that, after long trajectories for the vortices, they are nearly in the same 
place in the two fields, but essentially nonoverlapping. Here A(x, t) will be 
as large at the later time as if the vortices had wandered very far from each 
other. But if the example is taken as a model for meteorological prediction 
of a severe storm, it makes a great difference whether the position of the 
vortex is almost correct or wildly wrong. 

5. CONSTRAINED DECIMATION SCHEME 

The constrained decimation scheme (CDS) (5) is a mode-elimination 
method based on a bootstrap procedure: The eliminated modes are 
represented by forcing terms in generalized Langevin equations for the 
retained modes. The statistics of the forcing terms are determined via 
moment constraints from the statistics of the retained modes as the latter 
suffer the joint action of the forcing terms and their own self-interaction. 
The most important moment constraint ensures energy conservation by the 
total nonlinear interaction of all modes, retained and eliminated. Other 
constraints (they are infinite in number) serve to ensure realizability of 
moments and to fix systematically the moments of the joint distribution of 
retained mode amplitudes and forcing amplitudes in terms of the dis- 
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tribution of retained mode amplitudes alone. The moment constraints can 
be formulated so that they are exact. It therefore is possible, in principle, to 
obtain rigorous upper and lower bounds on quantities such as turbulent 
energy cascade rate by seeking maxima and minima under finite subsets of 
the moment constraints. 

The representation of eliminated modes by constrained forcing terms 
makes it possible to keep correct equilibrium statistical mechanics for a 
truncated inviscid system, even when the decimation ratio is different for 
different kinds of modes. In contrast, if modes are simply discarded from 
the equations, no adjustment of coupling coefficients for the remaining 
modes can preserve the correct absolute statistical equilibrium. 

There are relations between CDS and both renormalized perturbation 
theory (RPT) and renormalization group (RNG). In a particular limit of 
infinitely strong decimation (most of the modes eliminated), the CDS 
equations under a simple moment constraint can be treated perturbatively, 
and they then yield the direct-interaction approximation (DIA), a self- 
consistent line-renormalized perturbation approximation. In another limit, 
where all modes above a cutoff wavenumber within an infinite similarity 
spectrum range are eliminated under the same simple moment constraint, 
CDS yields renormalized equations for the modes below cutoff. In the 
renormalized equations, the eliminated modes are represented by random 
forcing terms together with a generalized (time-lagged) dynamical dam- 
ping. A sharp difference between CDS and both RPT and RNG arises 
when higher approximations are constructed. As more moment constraints 
are imposed on the forcing terms in the Langevin equations, CDS is 
expected to yield realizable, converging approximations to the exact 
statistics of the unmutilated system. ~5) In contrast, it is not known how to 
construct realizable, converging approximation sequences in either RPT 
or RNG. 

In order to describe CDS with the least clutter, specialize (2.4) to the 
case where vii is diagonal and L o- vanishes (e.g., Fourier modes in a cyclic 
box): 

(~/Ot + vi) Yi + ~ A ijk Yj Yk = 0 (5. I )  
jk 

Suppose, to start, that the system is large enough (for example, 
homogeneous turbulence in a box very large compared to any correlation 
scale) that each mode Yi is statistically similar to a large number of other 
modes. In this case, a subset D of the full set of modes yi may be chosen 
such that every mode y~ is statistically similar to a X mode and every small 
subset of y modes is statistically similar to some small set of Z modes. (The 
mode index i in ;~, runs over a subset of the values it takes in y~.) Here 
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statistical similarity means that low-order moments of the chosen subset of 
y modes are identical in value with low-order moments of the comparison 
subset of Z modes, or else can be accurately obtained by interpolation 
among moment values of subsets of Z modes. Such statistical symmetries 
must be consistent with the equations of motion and also require 
appropriate initial conditions. The Z modes will now be called the sample 
modes, and will be treated explicitly. All the y modes that are not X modes 
will be called implicit modes and will be treated only statistically. 

The equations for the sample modes can be written 

(O/Ot + v~)z~ + ~ Aok)GX k + q,-~ 0 (5.2) 
jk 

where 

qi = ~ '  Aii~ Yj Y~ (5.3) 
jk 

and Z~.k excludes all terms where yj and Yk both belong to the sample set. 
The strategy of CDS is to deal only with the sample-set equations of 
motion (5.2) and to treat the internal forcing qi as a stochastic quantity 
whose statistics is to be found from the statistical symmetry between y and 
Z modes. In the case of a small system, a formally similar treatment can be 
carried out by dealing with collective coordinates over a collection of 
similar replicas of the small systems With similar probability 
distributions. ~ 13) 

Two kinds of constraints control the dynamics of the sample system 
(5.2). First there is an infinite set of symmetry constraints on the q~. These 
are constructed by using the statistical symmetries or similarities among 
modes, and the definitions (5.3), to form expressions for moments of the 
joint distribution of the Z~ and qi in terms of moments of the Z~ alone. 
Examples are given below. The second class of constraints consists of an 
infinite set of realizability inequalities, also associated with the statistical 
similarities. If actual ensembles of amplitudes X~ are evolved according to 
(5.2), the moments of the Z~ obviously satisfy, by construction, all the 
realizability inequalities that express positivity of the probability dis- 
tribution of the Z~. However, the Xi are representative of the larger set y~, 
and the moments of the yi are expressible by statistical symmetries in terms 
of those of the )~i. An important fact is that realizability of the X~ moments 
does not automatically assure realizability of the y~ moments. Simple coun- 
terexamples can be given. (~ The realizability inequalities on moments of 
the y~ thereby represent important constraints on the Zi and, indirectly, on 
the qi. 

Under certain restrictions on statistical intermittency, it can be shown 
that converging sequences of statistical solutions to (5.1) can be construc- 



Reduced Descriptions of Hydrodynamic Turbulence 959 

ted by solving (5.2) under increasingly large sets of the symmetry and 
realizability constraints, involving successively higher order moments. ~5) 
Moreover, this procedure can be carried out in such a way that 
successively higher members of the standard moment-equation hierarchy 
associated with (5.1) are satisfied. 

A symmetry constraint of key importance is 

(qj(t) Zi(t') ) = ~ MiikA~,(Xj(t) Zk(t) Zi(t') > (5.4) 
jk 

where ( - )  denotes ensemble average and Muk is a multiplicity factor equal 
to the square root of an effective decimation ratio for triad interactions in 
the neighborhood of f/k. At t = t', (5.4) assures conservation of ensemble- 
averaged kinetic energy by the nonlinear interactions. In the limit of infinite 
decimation ratio, (5.4) has an intimate relation to DIA. A choice of qi(t) 
that satisfies (5.4) and obeys a particular least-square criterion yields 
precisely DIA. This qi(t) does not satisfy higher order symmetry con- 
straints. 

In the limit of infinite decimation, the explicit sum in (5.2) may 
legitimately be treated as a perturbation. Thus, a small parameter is 
introduced by the act of decimation where none existed before. The pertur- 
bation analysis of (5.2) under the constraints on the q~ leads to expansions 
that are closely related to those of RPT. DIA is a natural lowest order 
approximation both in CDS at infinite decimation ratio and in RPT. In 
higher orders (associated with imposition of higher order symmetry and 
realizability constraints in CDS) the expansions differ: CDS leads to 
convergent sequences of approximations, while RPT does not. 

The standard DIA equations may be written in generalized Langevin 
form as (14) 

(O/~t+v~)yi(t)+ t l~(t ,s)yi(s)ds+b,(t)=O (5.5) 

where y~(t) is one of a complete set of modes obeying (5.1), t/~(t, s) is a 
dynamical damping kernel, and bi(t) is an internal random forcing. 
Equation (5.5) is written for the simplest case, in which the modal 
covariance 

Yo(t, t') =- (yt( t)  yj(t') ) 

is diagonal. The quantities q~(t, s) and hi(t) satisfy 

qi(t, s) = - 2  ~ AijkAj~Gj(t, s) Yk(t, s) (5.6) 
jk 

(bt(t) b,(t') ) = 2 ~ (A~e) z Yj(t, t') Yk(t, t') (5.7) 
jk 
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Here Yk(t ,s)  = Ykk(t,s) is the response function associated with the 
explicitly linear equation (5.5): 

(c~/c~t + v~) Gi(t, t') + rl~(t, s) G~(s, t') ds = O, G~(t', t ' ) =  1 (5.8) 

A decimation treatment of (5.1) may be constructed that keeps all the 
modes y~ as explicit modes by means of an artifice: A large number N of 
systems (5.1) are considered with identical statistics, but statistically 
independent of each other. Then the collection of N systems is described by 
collective coordinates. The decimation consists in taking an explicit 
(sample) set that includes one collective coordinate Zi for each mode y~ in 
the original single system. This device, which may be used on systems of 
any size, does not reduce the size of the explicit system from its original 
value. Its usefulness is that it introduces high levels of exact statistical 
symmetry, which facilitate analysis of CDS. 

The form taken by the constraint (5.4) after these manipulations is, to 
O(N- 1/2), 

where 

(qi(t) zi(t') ) = ( ~i(t) u~(t') ) + (~ ( t )  z~(t') ) (5.9) 

Z~(t) = z~(t) + N-i/2ui(t)  (5.10) 

~ = - E A s j z k ,  ~,-EA~k(ujz~+u~zj) (5.11) 
jk jk 

zi and u~ are O(1), and the z~(t) are statistically independent for different i. 
The equations of motion for z~(t) and ui(t) are 

(~?/Ot+vi) z i ( t )+ q i ( t , s ) z i ( s )ds+b i ( t )=O (5.12) 

fo (O/~3t + vi) u~(t) + rli(t, s) u~(s) ds + ~ Ao.kzjz k = 0 (5.13) 
jk 

A least-squares solution for q~(t) may be found from (5.9)-(5.13). This q~(t) 
is the sum of the last two terms on the left side of (5.12) with tl~(t, s) and 
bi(t) given by 

rli(t, s) = f~ (~ ( t )  z~(s) ) U 7 l(s', s l0, t) ds' (5.14) 

bi(t ) = (~i(t) U~(S)> Z~ l(s, s'10, t) zi(s') ds ds' (5.15) 
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where the inverse functions are defined by 

fo Z~(t ', s) ZT~(s, t" I O, t) ds = 6( t ' -  t") 

Io Ue(t', s) Ui-~(s, t"lO, t) d s=6( t ' -  t") 
(5.16) 

It', t" in the interval (0, t)J. Equations (5.14) and (5.15) express a 
straightforward formal solution of (5.9). (The variables that take least- 
square values in this solution are not strictly the qi, but the quantities 
qi q- N -  1/2~i. ) 

This least-squares-decimation form of DIA equations is easily seen to 
be equivalent to the standard form. To show this, the moments 
(~i(t)zi(s)) and (~i(t)u~(s)) which appear in (5.14) and (5.15) are 
evaluated by solving (5.13). The identity of r/~(t, s), as given by (5.14), with 
the DIA form then follows immediately from the definition of U -1. The 
identity of bi(t), as given by (5.15), with the DIA form can be seen by 
forming (hi(t)zM')) ,  using the definition of Z -1, and comparing with the 
DIA expression for this average. Although the constraint (5.9) is linear in 
q ,  it nevertheless fixes the covariance of b~ to DIA values, via the equations 
of motion (5.12) and (5.13), the latter of which is nonlinear in the z~. 

The decimation form of DIA appears complicated. It has the advantage, 
however, that any changes in the symmetry constraints imposed are trans- 
parently reflected in the final statistical equations. By partially relaxing the 
constraints, final equations can be obtained that are simpler to integrate 
than the full DIA equations. An example is the replacement of the detailed 
equations (5.9) by less restrictive constraints consisting of the equal-time 
constraint plus several weighted integrals over difference time. The result is 
the replacement of the inverse functions by different, simpler ones. 

For the RNG-like application of CDS to an infinite similarity range, it 
is first assumed that the modes in a single system are dense. A cutoff 
wavenumber kc is taken; all modes below cutoff are explicit (retained) and 
all above cutoff are eliminated. Any moment of explicit amplitudes Z and 
forcing amplitudes q may be expressed, by the definition of q, as moments 
of the joint distribution of explicit and implicit (eliminated) amplitudes. 
The latter moments, in turn, may be expressed, by the similarity laws, in 
terms of moments of the explicit modes alone. Thus, a set of equations can 
be formed that includes (1)the dynamical equations and (2)a finite subset 
of the moment constraints, but that involves only explicit amplitudes and 
their statistics. If the moment constraints consist of (5.4) alone, then qi 
takes the form of a random forcing, with finite correlation time, plus a 
time-lagged dynamical damping. It is thus like the DIA qi in general form. 
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But now the covariance of the random forcing and the form of the damping 
function are not determined by perturbation theory, but are directly 
expressed in terms of triple moments of the retained modes. Because the 
modes are assumed to be dense, these moments may be expressed as 
neighborhood averages in a single realization instead of ensemble averages. 

The set of equations described above may be used to investigate the 
consistency of a priori  assumptions about similarity behavior. One can also 
see what kinds of qualitative changes in qi are introduced by adding higher 
moment constraints. It should be noted that, in contrast to traditional 
RNG procedures, the eliminated modes a.re not eliminated in successive 
bands, but all at once. Elimination of successive (finite or infinitesimal 
bands) can be carried out by CDS, but there is no reason to do so. 

The cutoff within an infinite similarity range discussed above is a 
limiting case of more general elimination of high wavenumbers. In the 
problem of subgrid-scale representation for computer simulations of 
turbulence, it is again needed to eliminate modes above a cutoff, but, in 
general, there is no exact similarity, CDS can be applied to this problem by 
using extrapolation formulas to express the moments of eliminated modes, 
which appear in the moment constraints, in terms of moments of explicit 
modes. There will then be two sources of error: one from imposing only a 
finite set of moment constraints and another from the particular 
extrapolation formula is used. 

ACKNOWLEDGMENTS 

Conversations and correspondence with N. Aubry, R. Grappin, L. 
Keefe, and P. Moin are gratefully acknowledged. This work was supported 
by NSF under grant ATM-8508386 to Robert H. Kraichnan, Inc., by DOE 
under contract W-7405-ENG-36 with the University of California, Los 
Alamos National Laboratory, and by DARPA under ONR contract 
N00014-85-K-0759 with Princeton University. 

REFERENCES 
1. K. Lindenberg and B. J. West, J. Atmos. Sci. 41:3021 (1984). 
2. R. H. Kraichnan, Adv. Math. 16:305 (1975). 
3. D. Fol"ster, D. R. Nelson, and M. J. Stephen, Phys. Rev. A 16:732 (1977). 
4. V. Yakhot and S. A. Orszag, J. Sci. Comput. 1:3 (1986). 
5. R. H. Kraichnan, in Theoretical Approaches to Turbulence, D. L. Dwoyer, M. Y. Hussaini, 

and R. G. Voight, eds. (Springer-Verlag, New York, 1985), pp. 91-135. 
6. J. L. Lumley, in Transition and Turbulence, R. E. Meyer, ed. (Academic Press, New York, 

1981), pp. 215-242. 



Reduced Descriptions of Hydrodynamic Turbulence 963 

7. N. Aubry, P. Holmes, J. L. Lumley, and E. Stone, Cornell University Report FDA-86-15 
(1986). 

8. N. Aubry and L. R. Keefe, Stanford University Center for Turbulence Research Report 
CTR-S87 (1987). 

9. R. Grappin and J. L~orat, Phys. Rev. Lett. 59:1100 (1987). 
10. R. H. Kraichnan and D. Montgomery, Rep. Prog. Phys. 43:547 (1979). 
11. L. Keefe, P. Moin, and J. Kim, preprint (1987). 
12. R. H. Kraichnan, 13:569 (1970). 
13. R. H. Kraichnan, J. Math. Phys. 2:124 (1961); 2:205 (1962). 
14. R. H. Kraichnan, J. Fluid Mech. 41:189 (1970). 

822/51/5-6-15 


